Testing GenAl
apps with
Docker

Mes de QA ‘25

About me

You can find me as @mdelapenya everywhere

Manuel de la Pena

Staff Software Engineer @ Docker
Computer Science degree, Master in Software Engineering

- Testcontainers Go maintainer since 2020

- Engineering Productivity at Elastic Observability
- QA Techlead at Liferay Cloud

- Core Engineer at Liferay

- In OSS since 2011

- Hitting keyboards since 1994

What we are going to see today:

0l. GenAlin today’s software

02. A mental model for testing: Cloud apps
03. Gen Al Tooling in Go

04. Let's talk about tests, b-Al-by!

05. Conclusions

1. GenAl in today’s software

GenAl in Today’s software

FOMO: Fear Of Missing Out!

Every day there is a new company offering Al services, exposing their models for you to consume them, and
new papers are published every day.

OpenAl
Google

Anthropic

Mistral

>
>

>

- Meta
>

-> DeepSeek
>

The M/L + Al + Data (MAD) landscape

Sources:

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orgpe

https://mad.firstmark.com

2011 logos 1416 578

In 2024 In 2023 Newcomers in 2024

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orqpe
https://mad.firstmark.com/

Develop with LLMs

Langchain (Python, Node), Langchain4j, SpringAl
(Java), Llamalndex, and many more tools:

- Allow you to talk to LLMs

- Design prompts

- Create chats, tools and agents

- Talk to Vector databases @ @ @

Depending on the model you talk to, you can use it LLMs SDKs
for:

- Image recognition
- Text to text generation
- Texttoimage/video/audio
- Multimodal generation 5 22
- ..morein 3,2
A GenAl application

2. A mental model for testing:
Cloud apps

Develop with the Cloud I

How it works GCloud, AWS, Azure

- Our company uses a given Cloud provider
- We setup that Cloud’s SDKs into your project
- We configure the credentials

- We start coding... @ @ @

Cloud SDKs in Go
Seems pretty similar to the LLM approach, doesn't
it?

But how do you test these applications?

v @29

Your application

Testing Cloud applications I

—Me-testsray-cadeisoerfeat! Test Environments

- Local Service emulating a given Cloud service
- Test environment in the Cloud provider

- Perteam?
- Per developer?
- Shared across the company? @ @ @
- How long does it take to have them?
- 2 .
Do you prune outdated resources? Cloud SDKs in Go

- Do you measure costs?

- Do you know Localstack, Google Cloud and
Azurite emulators?
o
- Standalone applications, or $} % § @

- Docker containers. .
Your application

Testing Cloud applications with emulators

e

__

A

Go application i
1

i

Cloud Go :

Go tests P Test results !
packages !

1

1

1

1

SOTTTTTTTT e \\
1

|

1

! I

! |

1 DynamoDB !

! |

! I

1 1

| I i
L= !

I IL :

! (TTTTTTTTTETTTTTIIS | :

r >E Localstack i :

i AWS Services I 1

e) :

1

(TTTTTTTTTTTommommos W ; i

| GCloud Emulators | | Azurite ; :

i GC Services n Azure Services : :

1 [} 1 1

L)\ o e ___] 1

N 7/

3.Gen Al Tooling in Go

Langchaingo

Go implementation for Langchain: https://github.com/tmc/langchaingo

Community driven project, led by Travis Cline.
- Generate completions from an LLM (OpenAl, Anthropic, Google...)
- Calculate embeddings for words, texts, images...

- Talk to Vector databases to look for similar/relevant documents to augment LLM responses
(Retrieval Augmented Generation)

€ Chroma, Milvus, pgVector, Pinecone, Qdrant, Weaviate...

https://github.com/tmc/langchaingo

langchaingo:
completions

Create a completion from an LLM,
using a streaming function so that
the answer is printed at the moment
it's produced by the LLM.

It comes with APIs to abstract the
LLM creation, obtaining it from
multiple providers: Google, OpenA|,
Mistral, LliamaFile....

- The completion code would
be exactly the same.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/02-streamin/main.go

// 1lm is 1llama3.2:3b
ctx := context.Background()
completion, err := llms.GenerateFromSinglePrompt (

ctx, 11m, "Give me a detailed and long explanation of why
Testcontainers for Go is great",

llms.WithTemperature(0.8),

1lms.WithStreamingFunc(func(ctx context.Context, chunk []byte)
error {

fmt.Print(string(chunk))

return nil

}),
)
if err != nil {
log.Fatal(err)
}

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go

langchaingo:
embeddings

Using the right model, you can
generate the embeddings for a text.

Embeddings are dense numerical
representation (n-dimensionall
vec:tors) of texts, that can be used to
calculate similarity between them.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/06-embeddings/main.go

// 1lm is all-minilm:22m
embedder, err := embeddings.NewEmbedder (11m)
if err !'= nil {

return fmt.Errorf("embedder new: %w", err)
}
docs := []string{

"Testcontainers is a Go package that provides lightweight,
throwaway instances of common databases, web browsers, or anything
else that can run in a Docker container",

"Docker is a platform designed to help developers build, share,

and run container applications.",

}
vecs, err := embedder.EmbedDocuments(context.Background(), docs)
if err !'= nil {

log.Fatal("embed query", err)

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go

langchaingo: ore
RAG // 1lm is all-minilm:22m

embedder, err := embeddings.NewEmbedder (11m)
Retrieval and Augmented if err 1= nil {
Generation. log.Fatalf("embedder new: %w", err)
}
store, err := weaviate.NewStore(context.Background(), embedder)
It's possible to pass a vector of if err !'= nil {
embeddings to a vector database, return fmt.Errorf("weaviate new store: %w", err)
and leverage the power of these)

systems to obtain relevant
documents to enrich the response
from the LLM.

// ingest relevant documents in the store
if err := ingestion(store); err != nil {
log.Fatalf("ingestion: %w", err)

}

// similarity search

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/07-rag/main.go

relevantDocs, err := store.SimilaritySearch(context.Background(),

"What is my favorite sport?", 1, optionsVector...)

if err !'= nil {

log.Fatalf("similarity search: %w", err)

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go

Docker Model Runner

Inference Engine: directly embedded into Docker Desktop

https://docs.docker.com/ai/model-runner/

-> docker model pull $MODEL
- docker model run $MODEL
- Currently for Mac with Apple Silicon and Window with NVIDIA/Qualcomm GPUs
-> Main features:
€& OpenAl-compatible APIs

€ Package GGUF file as OCI artifacts

https://docs.docker.com/ai/model-runner/

Demo:
DMR in action

Testcontainers Go

An Open Source Go package (MIT license) providing
developer-friendly API's on top of the Docker
engine.

https://github.com/testcontainers/testcontainers

-go

Start, stop, terminate containers and networks
Wait for containers on custom conditions
Lifecycle hooks to inject custom code
(Pre/Post)

Copy files to/from containers

Garbage collection of Docker resources

Go package: docker/docker

%o

Go package: testcontainers-go

v @29

Your Go app

https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/testcontainers-go

Testcontainers Go: modules
o

o Go package: testcontainers-go
Go packages providing access to the most used

technologies:

- Relational DBs: Mysq|, Postgres, ...

- Vector DBs: Weaviate, Chroma, Qdrant,
Milvus...

- Non Relational DBs: Elasticsearch, Redis, @ @ @
MongoDB, Neo4j, Opensearch...

- Cloud Emulators: Localstack, Google Cloud,
Azurite

- Inference Engines: Docker Model Runner,
Ollama

- Keycloak, OpenFGA, Vault..

- 60 different Go modules! -

- Convenient API specific to each module. a} > § @

Go packages: testcontainers-go/modules

https://www.testcontainers.com/modules Your Go app

https://www.testcontainers.com/modules

Remember the Docker Model Runner?

A module exists! https://testcontainers.com/modules/dockermodelrunner/?language=go

Since TC Go v0.37.0, it's possible to interact with the Docker Model Runner that is bundled into Docker Desktop
(+4.41.0) as it was a container, proxying the requests using a socat container. It can automatically pull models
from Docker Hub (and GGUF models from Huggingface!)

dmrContainer, err := dmr.Run(ctx, dmr.WithModel(“ai/llama3.2:1B-0Q4_68"))
if err != nil {
log.Printf("failed to start container: %s", err)

return

https://testcontainers.com/modules/dockermodelrunner/?language=go

Dockerised workflow

__

Go application

Test time Dependencies

Go application

VectorDB
Weaviate

A

1

1

1

1

1

1

|

langchaingo —> Result |

1

1

1

1

1
__ N
1

:

1

Chat Model . !
Embeddings Model 1

DIl Cl@VelclCINENN-— — — — AR — — — — — 1
Docker Model Runner 1 i

Runner I |

1

| |

1

\ 4 i

| (T T 1

. PULL Models ! J

| TestcontainersGo | | >E bocker Model | |
| Create Containers 1 | : 1
' ! ! Runner 1 |
_________________________________ 1
A .

2R Testcontainers
i dOCker; o Cloud by docker:

4. Let’s talk about tests, b-Al-by!

The application

- An application talking to two models:
€ Raw calls to the model
€ Calls to the same model using RAG
= It uses langchaingo, Docker Model Runner and testcontainers-go

- How can we verify that non-deterministic LLM responses are correct?

https://qithub.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

= Round1:
Qtrmgs
compadarison

https://github.comlhdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-1-string-comparison

/. Round 2:
cosine similarity

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-2-embeddings

Enter Evaluators

> AKA “LLM-as-a-Judge” (https://eugeneyan.com/writing/lim-evaluators/).

= Evaluate the quality of another LLM's response to an instruction or query.
- Define a very strict System Prompt:
€ Provide Instructions: e.g. response format
€ Provide reference examples
- Define a very strict User Prompt:
€ Provide a detailed format: e.g. ### question ### answer ### reference ###.
& Provide a reference (e.g. in the test as an expectation)
€ Structured output, semontic/style constraints

e Respond with “yes” or “no” including the reasoning.

https://eugeneyan.com/writing/llm-evaluators/

Adding an Evaluator

__

f 3
i Go application !
: :
! 1
! |
1
i Go application langchaingo > Result :
! :
! |
1
.- _ A K
__ .
[)
! 1
! 1
! 1
! 1
! 1
! 1
! 1
i Chat Model . Evaluator Model I
i Vector DB Embeddings Model !
i : Docker Model Docker Model !
i Weaviate Docker Model Runner I 1
| Runner Runner I 1
! 1
: A I :
| \/ !
e N
! . _ ! [PULLModels | |
: e e o __ _»: Testcontqmer.s Go : | e e e e e e e o = = - I.______.>i Docker Model : :
i ! Create Containers ! : Runner Lo
. L e //

“ Final Round:
using an Evaluator

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-3-evaluator-agents

5. Conclusions

Conclusions

Langchaingo: contribute!

Testcontainers Go + Docker Model Runner: a really powerful and easy-to-use combo for local
development experience.

Using Evaluators (models with a very strict system prompt) helps us in identifying if the model our
application is using responds correctly:

€ Helps us tuning up our application: e.g. choosing a different model, a different vector store,
or even modifying the metrics used to classify/correlate the responses at test time.

Different models can produce different responses:

€ Eg. Llama3.2:3b can excel in one task locally, but its response could be different than using
OpenAl + 04 (220b???).

Integration tests will give you enough confidence so you can make progress with speed, but you
still need to test against the real thing, e.g. with OpenAl.

€ Run lots of integration tests but you still need to run some E2E tests against the real thing!

Resources

https://qithub.com/mdelapenya/generative-ai-with-testcontainers
https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/workshop-go
https://docs.docker.com/ai/model-runner/
https://dair-ai.thinkific.com/: Courses on Al

@mdelapenya everywhere

https://github.com/mdelapenya/generative-ai-with-testcontainers
https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/workshop-go
https://docs.docker.com/ai/model-runner/
https://dair-ai.thinkific.com/

