
Testing GenAI
apps with

Docker
Mes de QA ‘25

You can find me as @mdelapenya everywhere

About me

Manuel de la Peña
Staff Software Engineer @ Docker
Computer Science degree, Master in Software Engineering

- Testcontainers Go maintainer since 2020

- Engineering Productivity at Elastic Observability

- QA Tech lead at Liferay Cloud

- Core Engineer at Liferay

- In OSS since 2011

- Hitting keyboards since 1994

01. GenAI in today’s software

02. A mental model for testing: Cloud apps

03. Gen AI Tooling in Go

04. Let’s talk about tests, b-AI-by!

05. Conclusions

What we are going to see today:

1. GenAI in today’s software

FOMO: Fear Of Missing Out!

Every day there is a new company offering AI services, exposing their models for you to consume them, and
new papers are published every day.

➔ OpenAI

➔ Google

➔ Anthropic

➔ Meta

➔ Mistral

➔ DeepSeek

➔ …

GenAI in Today’s software

The M/L + AI + Data (MAD) landscape
Sources:

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orqpe

https://mad.firstmark.com

2011 logos
In 2024

1416
In 2023

578
Newcomers in 2024

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orqpe
https://mad.firstmark.com/

LLMsLangchain (Python, Node), Langchain4j, SpringAI
(Java), LlamaIndex, and many more tools:

- Allow you to talk to LLMs
- Design prompts
- Create chats, tools and agents
- Talk to Vector databases

Depending on the model you talk to, you can use it
for:

- Image recognition
- Text to text generation
- Text to image/video/audio
- Multimodal generation
- …more in 3,2,1

Develop with LLMs

LLMs SDKs

A GenAI application

2. A mental model for testing:
Cloud apps

GCloud, AWS, AzureHow it works

- Our company uses a given Cloud provider
- We setup that Cloud’s SDKs into your project
- We configure the credentials
- We start coding…

Seems pretty similar to the LLM approach, doesn’t
it?

But how do you test these applications?

Develop with the Cloud

Cloud SDKs in Go

Your application

- No tests, my code is perfect!
- Local Service emulating a given Cloud service
- Test environment in the Cloud provider

- Per team?
- Per developer?
- Shared across the company?
- How long does it take to have them?
- Do you prune outdated resources?
- Do you measure costs?

- Do you know Localstack, Google Cloud and
Azurite emulators?

- Standalone applications, or
- Docker containers.

Test Environments

Testing Cloud applications

Cloud SDKs in Go

Your application

Testing Cloud applications with emulators

Go tests
Cloud Go
packages

SNS S3

Test results

Localstack
AWS Services

Go application

Cloud Services

Lambdas

GCloud Emulators
GC Services

Azurite
Azure Services

DynamoDB

3. Gen AI Tooling in Go

Go implementation for Langchain: https://github.com/tmc/langchaingo

Community driven project, led by Travis Cline.

➔ Generate completions from an LLM (OpenAI, Anthropic, Google…)

➔ Calculate embeddings for words, texts, images…

➔ Talk to Vector databases to look for similar/relevant documents to augment LLM responses
(Retrieval Augmented Generation)

◆ Chroma, Milvus, pgVector, Pinecone, Qdrant, Weaviate…

Langchaingo

https://github.com/tmc/langchaingo

Create a completion from an LLM,
using a streaming function so that
the answer is printed at the moment
it’s produced by the LLM.

It comes with APIs to abstract the
LLM creation, obtaining it from
multiple providers: Google, OpenAI,
Mistral, LlamaFile…:

- The completion code would
be exactly the same.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/02-streamin/main.go

// llm is llama3.2:3b

ctx := context.Background()

completion, err := llms.GenerateFromSinglePrompt(

 ctx, llm, "Give me a detailed and long explanation of why

Testcontainers for Go is great",

 llms.WithTemperature(0.8),

 llms.WithStreamingFunc(func(ctx context.Context, chunk []byte)

error {

 fmt.Print(string(chunk))

 return nil

 }),

)

if err != nil {

 log.Fatal(err)

}

langchaingo:
completions

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go

Using the right model, you can
generate the embeddings for a text.

Embeddings are dense numerical
representation (n-dimensional
vectors) of texts, that can be used to
calculate similarity between them.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/06-embeddings/main.go

// llm is all-minilm:22m

embedder, err := embeddings.NewEmbedder(llm)

if err != nil {

 return fmt.Errorf("embedder new: %w", err)

}

docs := []string{

 "Testcontainers is a Go package that provides lightweight,

throwaway instances of common databases, web browsers, or anything

else that can run in a Docker container",

 "Docker is a platform designed to help developers build, share,

and run container applications.",

}

vecs, err := embedder.EmbedDocuments(context.Background(), docs)

if err != nil {

 log.Fatal("embed query", err)

}

langchaingo:
embeddings

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go

Retrieval and Augmented
Generation.

It’s possible to pass a vector of
embeddings to a vector database,
and leverage the power of these
systems to obtain relevant
documents to enrich the response
from the LLM.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/07-rag/main.go

// llm is all-minilm:22m

embedder, err := embeddings.NewEmbedder(llm)

if err != nil {

 log.Fatalf("embedder new: %w", err)

}

store, err := weaviate.NewStore(context.Background(), embedder)

if err != nil {

 return fmt.Errorf("weaviate new store: %w", err)

}

// ingest relevant documents in the store

if err := ingestion(store); err != nil {

 log.Fatalf("ingestion: %w", err)

}

// similarity search

relevantDocs, err := store.SimilaritySearch(context.Background(),

"What is my favorite sport?", 1, optionsVector...)

if err != nil {

 log.Fatalf("similarity search: %w", err)

}

langchaingo:
RAG

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go

Inference Engine: directly embedded into Docker Desktop

https://docs.docker.com/ai/model-runner/

➔ docker model pull $MODEL

➔ docker model run $MODEL

➔ Currently for Mac with Apple Silicon and Window with NVIDIA/Qualcomm GPUs

➔ Main features:

◆ OpenAI-compatible APIs

◆ Package GGUF file as OCI artifacts

Docker Model Runner

https://docs.docker.com/ai/model-runner/

 Demo:
DMR in action

An Open Source Go package (MIT license) providing
developer-friendly API’s on top of the Docker
engine.

https://github.com/testcontainers/testcontainers
-go

- Start, stop, terminate containers and networks
- Wait for containers on custom conditions
- Lifecycle hooks to inject custom code

(Pre/Post)
- Copy files to/from containers
- Garbage collection of Docker resources

Testcontainers Go

Go package: docker/docker

Your Go app

Go package: testcontainers-go

https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/testcontainers-go

Go packages providing access to the most used
technologies:

- Relational DBs: Mysql, Postgres, …
- Vector DBs: Weaviate, Chroma, Qdrant,

Milvus…
- Non Relational DBs: Elasticsearch, Redis,

MongoDB, Neo4j, Opensearch…
- Cloud Emulators: Localstack, Google Cloud,

Azurite
- Inference Engines: Docker Model Runner,

Ollama
- Keycloak, OpenFGA, Vault…
- 60 different Go modules!
- Convenient API specific to each module.

https://www.testcontainers.com/modules

Go packages: testcontainers-go/modules

Testcontainers Go: modules

Go package: testcontainers-go

Your Go app

https://www.testcontainers.com/modules

A module exists! https://testcontainers.com/modules/dockermodelrunner/?language=go

Since TC Go v0.37.0, it’s possible to interact with the Docker Model Runner that is bundled into Docker Desktop
(+4.41.0) as it was a container, proxying the requests using a socat container. It can automatically pull models
from Docker Hub (and GGUF models from Huggingface!)

Remember the Docker Model Runner?

dmrContainer, err := dmr.Run(ctx, dmr.WithModel(“ai/llama3.2:1B-Q4_0”))

if err != nil {

 log.Printf("failed to start container: %s", err)

 return

}

https://testcontainers.com/modules/dockermodelrunner/?language=go

Dockerised workflow

Go application langchaingo

Chat Model
Docker Model

Runner

Embeddings Model
Docker Model Runner

Result

Testcontainers Go
Create Containers

Go application

Test time Dependencies

Docker Platform

VectorDB
Weaviate

PULL Models
Docker Model

Runner

4. Let’s talk about tests, b-AI-by!

➔ An application talking to two models:

◆ Raw calls to the model

◆ Calls to the same model using RAG

➔ It uses langchaingo, Docker Model Runner and testcontainers-go

➔ How can we verify that non-deterministic LLM responses are correct?

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

The application

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

 Round 1:
strings
comparison

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-1-string-comparison

 Round 2:
cosine similarity

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-2-embeddings

➔ AKA “LLM-as-a-Judge” (https://eugeneyan.com/writing/llm-evaluators/).

➔ Evaluate the quality of another LLM’s response to an instruction or query.

➔ Define a very strict System Prompt:

◆ Provide Instructions: e.g. response format

◆ Provide reference examples

➔ Define a very strict User Prompt:

◆ Provide a detailed format: e.g. ### question ### answer ### reference ###.

◆ Provide a reference (e.g. in the test as an expectation)

◆ Structured output, semantic/style constraints

● Respond with “yes” or “no” including the reasoning.

Enter Evaluators

https://eugeneyan.com/writing/llm-evaluators/

Adding an Evaluator

Go application langchaingo

Chat Model
Docker Model

Runner

Vector DB
Weaviate

Result

Testcontainers Go
Create Containers

Go application

Runtime Dependencies

Embeddings Model
Docker Model Runner

Evaluator Model
Docker Model

Runner

PULL Models
Docker Model

Runner

 Final Round:
using an Evaluator

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-3-evaluator-agents

5. Conclusions

➔ Langchaingo: contribute!

➔ Testcontainers Go + Docker Model Runner: a really powerful and easy-to-use combo for local
development experience.

➔ Using Evaluators (models with a very strict system prompt) helps us in identifying if the model our
application is using responds correctly:

◆ Helps us tuning up our application: e.g. choosing a different model, a different vector store,
or even modifying the metrics used to classify/correlate the responses at test time.

➔ Different models can produce different responses:

◆ E.g. Llama3.2:3b can excel in one task locally, but its response could be different than using
OpenAI + o4 (220b???).

➔ Integration tests will give you enough confidence so you can make progress with speed, but you
still need to test against the real thing, e.g. with OpenAI.

◆ Run lots of integration tests but you still need to run some E2E tests against the real thing!

Conclusions

Thank you!
Mes de QA ‘25

Resources
https://github.com/mdelapenya/generative-ai-with-testcontainers
https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/workshop-go
https://docs.docker.com/ai/model-runner/
https://dair-ai.thinkific.com/: Courses on AI

@mdelapenya everywhere

https://github.com/mdelapenya/generative-ai-with-testcontainers
https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/workshop-go
https://docs.docker.com/ai/model-runner/
https://dair-ai.thinkific.com/

